DEFENSE BUSINESS BOARD

Guiding Principles to Optimize DoD's Science and Technology Investments

Task Group Update

October 23, 2014

Overview

Impetus for Study

The Department of Defense (DoD) spends about \$12 billion annually on Science and Technology (S&T). This funding is essential for building the knowledge and technology base for future DoD capabilities and is the source for critical "leap-ahead" technologies that advance DoD's warfighting capabilities. DoD's S&T budget is projected to decrease commensurate with overall defense budget reductions. The downward trend compels DoD to seek ways to leverage S&T investments made by the larger economy. The private sector invests many times as much in R&D as DoD and in many areas has clearly superior technology.

Deliverables

Recommendations on how DoD can learn from commercial best practices to better manage S&T funds and how to attract technology companies to support DoD's emerging capabilities needs.

Task Group

Mr. Phil Odeen (Chair), Mr. Howard Cox, Ms. Roxanne Decyk, Mr. Jack Zoeller, Mr. John O'Connor (Consultant), and CDR Bruce "Crash" Defibaugh, USN (DBB Military Representative)

Our Tasking

The Terms of Reference direct the study to address:

- DoD is increasingly relying on commercial technology. How should it ensure its areas of critical technology are not ignored, but supported?
- How are R&D decisions made across the following types of organizations?:
 - Global 500 corporations;
 - Venture capital and private equity firms; and
 - Technology startups
- How can DoD learn from R&D investment best practices of commercial and nonprofit organizations to better direct and leverage research funds to benefit the defense mission?
- How can DoD find and exploit commercial technology in the many areas where it is clearly superior to DoD's in-house technology?
- How can DoD effectively attract fledgling technology development companies that have cutting edge capabilities?
- The Task Group views this as an opportune time to shift focus from "conducting science" to "strategic management of science"

Progress

- Reviewed current/past DoD strategic and financial documents and reports/studies from think tanks and government agencies
- Evaluated efforts in private/public sectors and DoD experience to identify practices that resulted in both success and failure
- Conducted interviews with individuals from the private sector and government, including:
 - Current and former CEOs and Chief Technology Officers (CTOs) of Fortune 500 companies with experience in leading successful technology development
 - Current and former DoD leadership in Research, Development, Test, and Evaluation (RDT&E)
 - Other Departmental leaders past and present

Initial Assessment

- Commercial S&T Best Practices differ markedly from those of DoD
 - A. Commercial S&T priorities and investments are strategy driven
 - Flow from the broader corporate business strategy
 - Senior leadership is deeply involved in all major decisions related to the S&T strategy and priorities
 - B. Companies seek to control Intellectual Property (IP) critical to executing their S&T strategy and business plans
 - When the internal R&D staff lacks needed expertise, companies partner with companies that have the expertise, but maintain control over their IP
 - Small companies are often acquired to deliver needed technology and expertise
 - C. Some Non-Profits (e.g., Gates Foundation) "Crowdsource" for technology solutions
 - Now being emulated by UK Ministry of Defense and the commercial sector
 - Attract widely different ideas and proposals from many sources
 - Commercial sites, such as "Innovation Posting," are expanding rapidly to enable "Crowdsourcing"

Initial Assessment cont'd

II. DoD faces a number of R&D challenges

- A. Work force is aging and skills are stove-piped
 - Little movement (experience) across labs and departments
 - But recent programs are attracting capable young technologists
- B. The lab structure is large, complex and uncoordinated
 - 67+ labs across 22 states and 39,000+ scientists and engineers conducting ~\$30B in work each year
 - Few are proximate to commercial technology hubs
 - Each Service has a different model
 - Lead lab for each Service (e.g., Naval Research Lab)
 - Multiple engineering labs, usually weapon/system focused
 - No overall management at the Office of the Secretary of Defense (OSD) level
- C. There is no clear S&T strategy or set of priorities at OSD or Military Department levels
- D. Independent Research and Development (IRAD) spending (\$4.5B) is not managed by the department or coordinated with key technology needs

Initial Assessment cont'd

III. DoD processes also are sub-optimized

- A. S&T spending (6-1) is uncoupled from Services' needs
 - Seen as DoD's contribution to university science and education of scientists
 - Close coupling may not be feasible
- B. Difficult to strategically source key technology from private sector
 - Limited visibility beyond DoD industrial base
 - Many private sector companies refuse to deal with DoD (e.g., robotics) due to government regulations and I.P. concerns
 - Where agility/speed are needed, acquisition process is slow and complex

Initial Findings – DoD "As Is"

- Lacks a departmental strategy-driven S&T process to set priorities and allocate funds
 - A. DoD has actionable priorities in only a few key areas (e.g. Cyber and Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance)
 - B. Service strategies often disconnected from their critical capabilities needs
 - C. OSD/JS do not manage service strategy-driven priorities or resource allocations that could provide unity of action
- II. Frequently fails to exploit commercial technology which is more advanced in most areas critical to military capabilities
 - A. Commercial S&T spending is a multiple of DoD spending
 - B. Potential adversaries have easy access to most commercial technology and are often agile and able to move quickly to exploit it
 - C. Defense industry does lacks in-depth access to DoD key requirements which would enable them to focus their S&T and IRAD spending

Initial Findings – DoD "As Is"

- III. R&D establishment often reproduces technology available in the private sector
 - A. Little attention or outreach to private sector technology critical to DoD future capabilities
 - B. DoD S&T does not focus on a limited set of military unique technologies, but a wider range where the private sector could be the source
- IV. Internal processes are a barrier to the exploitation of commercial technology
 - A. Slow, complex acquisition process out of phase with rapid technology change
 - Onerous requirements such as cost accounting standards and audits are a major deterrent
 - C. Companies are also deterred by International Trade in Arms Regulations (ITAR) and IP rules

Next Steps

- Conduct remaining interviews with current and former DoD senior leaders and private sector executives
- Test key findings with DoD and private sector leaders with responsibility for R&D in significant organizations
- Identify recommendations that can address relevant findings
- Plan to present final recommendations at the DBB quarterly meeting scheduled for January 22, 2015

DEFENSE BUSINESS BOARD

Questions?

Defense Business Board

Business Excellence In Defense of the Nation